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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:There is a large gap between diagnostic needs and diagnostic access across much of sub-

Saharan Africa (SSA), particularly for infectious diseases that inflict a substantial burden of

morbidity and mortality. Accurate diagnostics are essential for the correct treatment of indi-

viduals and provide vital information underpinning disease surveillance, prevention, and

control strategies. Digital molecular diagnostics combine the high sensitivity and specificity

of molecular detection with point-of-care format and mobile connectivity. Recent develop-

ments in these technologies create an opportunity for a radical transformation of the diag-

nostic ecosystem. Rather than trying to emulate diagnostic laboratory models in resource-

rich settings, African countries have the potential to pioneer new models of healthcare

designed around digital diagnostics. This article describes the need for new diagnostic

approaches, highlights advances in digital molecular diagnostic technology, and outlines

their potential for tackling infectious diseases in SSA. It then addresses the steps that will be

necessary for the development and implementation of digital molecular diagnostics.

Although the focus is on infectious diseases in SSA, many of the principles apply to other

resource-limited settings and to noncommunicable diseases.

Author summary

Diagnostic tests are fundamental to the practice of modern medicine, underpinning cor-

rect diagnosis and treatment. There is a global disparity in access to diagnostic tests, and

much of the population of sub-Saharan Africa (SSA) does not have access to essential

tests. Consequently, there is also limited data on the true burden of many diseases in SSA.

Diagnostic laboratories are expensive and complex to build, run and maintain, and so

increasing the number of laboratories may not be the best solution. We have identified

new digital diagnostic technologies as an alternative approach with potential to bring the

laboratory to the patient, wherever they may be. These technologies could transform

healthcare in SSA, particularly for infectious diseases. CAU : PleasecheckwhethertheeditstothesentenceConductingdiagnostictestsina:::arecorrectandamendifnecessary:onducting diagnostic tests in a

handheld device, often on the surface of a microchip, then may provide the accuracy of

tests in a large laboratory, but in a rapid, cheap, and portable format. By transmitting real-

time data, digital diagnostics also have the potential to transform surveillance of infectious
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diseases. This will allow prevention and control measures to be targeted where they are

most needed.

Introduction

Sub-Saharan Africa (SSA) experiences the greatest gap between health needs and healthcare

provision [1]. At least 50% of the population do not have access to essential health services [2].

One critical gap is easy access to accurate diagnostics [3], which is fundamental for achieving

Universal Health Coverage (UHC) [4,5]. Accurate diagnostics help to ensure that correct treat-

ments are prescribed for individuals and provide vital epidemiological information that under-

pins disease prevention and control strategies [6,7]. Advances in digital molecular diagnostics

(defined in Fig 1) have the potential to accelerate healthcare provision towards UHC, bringing

high-quality diagnostics and decision support tools to the point of care while simultaneously

collecting real-time data to underpin efficient and effective disease control.

The United Nations Sustainable Development Goal 3 (SDG3) (https://sdgs.un.org/goals/

goal3) sets ambitious targets for 2030, including an end to preventable deaths of newborns and

children under 5 years (the group most at risk of death from infection), and epidemics of

AIDS, tuberculosis, malaria, and neglected tropical diseases. These goals will only be possible

through dramatic changes in access to diagnostics and treatment, along with better acquisition

and use of data to efficiently target and monitor interventions. The Coronavirus Disease 2019

(CAU : PleasenotethatCOVID � 19hasbeendefinedasCoronavirusDisease2019inthesentenceTheCoronavirusDisease2019ðCOVID � 19Þpandemichas::::Pleasecheckandcorrectifnecessary:OVID-19) pandemic has threatened to reverse progress already made towards achieving

SDG3 in SSA [8] and highlighted the importance of diagnostics for controlling infectious dis-

eases [9]. Improved diagnostics are therefore central to international strategies against high-

burden infectious diseases [10,11], to address new pandemic threats [9,12,13] and ultimately

prevent avoidable deaths. The World Bank and African Union predict a digital transformation

that will accelerate trajectories of economic growth and innovation in Africa over the next

decade [14]. There is an opportunity for a parallel digital revolution in diagnostics. Similar to

the way that mobile phone technology has leapfrogged conventional landline infrastructure in

most of SSA [15], a digital diagnostic ecosystem has the potential to replace many of the needs

for conventional diagnostic laboratory infrastructure.

This article reviews the need for improved diagnostics and disease surveillance in SSA, how

digital diagnostics could meet this need, recent advances and future developments in digital

diagnostic technology, and approaches for successful implementation. The focus is primarily

on digital molecular diagnostics for infectious diseases in SSA, but similar principles apply to

digital diagnostics for noncommunicable diseases and other resource-limited settings.

Challenges and opportunities for diagnostic ecosystems in SSA

There is enormous variation in the availability and accessibility of diagnostics within SSA,

largely determined by socioeconomic and geopolitical factors [1]. State-of-the-art diagnostic

facilities are available to an affluent minority in some countries, while the majority can only

access or afford a small range of diagnostic tests offered through community or primary

healthcare facilities [3]. WHO lists 32 essential in vitro diagnostic tests for use in community

and health settings without laboratories, including dipstick tests, rapid diagnostic tests (RDTs)

using lateral flow formats (e.g., malaria RDTs), and small handheld analysers, most of which

can only detect single analyte [16]. However, even these remain unavailable in many settings

across SSA [3,17,18]. WHO recommends additional diagnostics for healthcare facilities with

clinical laboratories including microscopy, automated bench-top analysers, and nucleic acid

amplification tests, many of which require skilled operators, quality control, uninterrupted
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Fig 1. What is a digital molecular diagnostic? Throughout this article, the term “digital molecular diagnostic”

describes a small electronic device, providing a sample-to-answer solution to a diagnostic problem, in a portable, easy-

to-use, robust, and cheap format. Any processing of a biological sample would ideally be integrated into the device,

before allowing quantitative detection of the molecules used to make the diagnosis. The molecules detected are

typically nucleic acids (DNA or RNA), but could also include proteins, or small chemical molecules. Such digital
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electricity supplies, and supply and maintenance infrastructure. In reality, many of these tests

are also unavailable, only intermittently available [19,20], or they may be prohibitively expen-

sive, favouring use of cheaper alternatives with limited accuracy and quality assurance [21].

In contrast to the situation in SSA, access to a huge range of diagnostic tests is the norm in

high-income countries (Fig 2). In high-resource health systems, there is often a choice of pub-

lic and private healthcare providers, a variety of locations in which tests may be performed,

and robust physical and digital infrastructure to transfer diagnostic samples and results

between facilities, practitioners and patients. Indeed, the relative ease of diagnostic testing

probably encourages overuse and overreliance on diagnostic tests [22].

A germane question is whether SSA health systems should aim to recapitulate the diagnostic

ecosystems that have developed in highly resourced countries, or whether they should take an

alternative path. Achieving universal access to high-quality laboratory-based diagnostics for all in

SSA by 2030 seems unrealistic given the required infrastructural changes. Alternative diagnostic

strategies may enable countries in SSA to “leapfrog” over the need to mimic the complex diagnos-

tic ecosystems established in resource-rich countries [23] and lead to more efficient and economi-

cal models of healthcare, bringing high-quality diagnostics to more of the population.

The need for new diagnostics for infectious diseases in SSA

Infectious diseases are a dominant cause of premature death, chronic illness, and loss of pro-

ductivity in SSA [24] and a major impediment to economic growth, education, and human

development [24]. Diagnostic tests are essential for the accurate detection and optimal man-

agement of patients with infectious diseases [7], and the majority of the 122 tests recom-

mended in WHO’s List of Essential In Vitro Diagnostics relate to infections [16]. The

spectrum of human pathogens in SSA is vast, with high burdens of bacterial, viral, parasitic,

and fungal diseases [25] and frequent coinfections [26]. Most infectious diseases in SSA are

treated outside conventional health facilities, in the absence of clinical diagnostic laboratories,

using syndromic approaches guided by few, if any, diagnostic tests [27] (Fig 3). Syndromic

approaches have poor specificity, resulting in overtreatment with antimicrobials, but may also

have limited sensitivity, missing cases of treatable illness [28].

Diagnosis of infectious diseases is inherently difficult because many pathogens can cause

similar illness syndromes. Pathogens may not be detectable in easily sampled specimens like

blood and upper respiratory tract swabs, and many organisms with pathogenic potential can

be detected in nonsterile body sites without causing disease. Even when state-of-the-art diag-

nostic tests are performed, the causes of severe infection syndromes like sepsis or severe pneu-

monia cannot be microbiologically confirmed in 50% or more of cases [29]. Thus, there is an

imperative to improve both the sensitivity and specificity of diagnosis at the point of care, to

better identify those who will benefit most from available treatments, and to identify those at

greatest risk of deterioration (who need to be transferred to a health facility that can provide

more supportive treatment).

Cheap and easy-to-use lateral flow RDTs have transformed diagnosis of some infectious

diseases at the point of care [30]. Malaria RDTs are a particularly good example [31]; however,

they still have many limitations: They are less sensitive than expert microscopy or PCR,

diagnostics will often use lab-on-chip technology, with their defining features being the generation, processing, and

storage of data. Signals from the detection of molecules undergo processing within the device, so that actionable results

are reported to the user without the need for further analysis. Results may be displayed on the device itself, or linked to

other interfaces such as smartphones, and decision support may be integrated. Quantitative data generated by the

device can be easily and immediately transmitted to facilitate patient care and contribute to disease surveillance.

https://doi.org/10.1371/journal.pdig.0000064.g001
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particularly for low parasite densities in asymptomatically infected individuals; emerging

genetic mutations can render parasites undetectable by malaria RDTs [32]; they cannot iden-

tify antimalarial drug resistance; and they remain positive for weeks after successful treatment.

Other RDTs feature heavily in WHO essential diagnostics list, and RDTs are in development

for many of SSA’s Neglected Tropical Diseases [33]. However, transformative RDTs have not

yet emerged for detection of bacterial infections in SSA, and there is still a heavy reliance on

syndromic approaches in the community (Fig 3) and culture-based techniques in facilities

with laboratory infrastructure. While culture is currently the “gold standard” for diagnosis of

many bacterial infections, it is far from perfect because sensitivity is dramatically reduced by

Fig 2. Contrasting access to healthcare and diagnostics between low-resourced SSA settings and highly resourced healthcare settings. In countries with highly

resourced health systems, most of the population have easy access to health care services, often through multiple different routes. A wide range of diagnostic tests can be

accessed through most healthcare providers, even if the samples need to be sent elsewhere for analysis. Strong infrastructure allows rapid transport, testing, and feedback

of results, and diagnostic information can be shared between providers and patients with relative ease. Healthcare providers are often highly skilled and able to interpret

the results of many different tests. In contrast, access to healthcare facilities and skilled healthcare workers in SSA is more heterogeneous and often limited, sometimes

involving long journeys or incurring high costs to patients and their families. In rural and remote areas, the only accessible healthcare may be delivered by less skilled

community healthcare workers, equipped with a limited range of point-of-care diagnostic tests. Healthcare facilities with high-quality laboratories do exist, but their

capacity and the infrastructure to transport samples from distant facilities to these laboratories and return results in a timely fashion is often insufficient for the needs of

the population, and results in further gaps in their linkage to appropriate and timely patient care. SSA, sub-Saharan Africa.

https://doi.org/10.1371/journal.pdig.0000064.g002
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pretreatment with antibiotics, it is slow, and it relies on the bacteria being present in the sam-

ple that is cultured. Molecular pathogen detection, using nucleic acid amplification tests, is

increasingly seen as a solution. However, this usually requires advanced laboratory infrastruc-

ture, is restricted to a predefined panel of pathogens, and rarely provides information about

antimicrobial susceptibility. Nevertheless, there are examples of successful combined molecu-

lar pathogen and resistance testing, such as the Cepheid GeneXpert platform for tuberculosis

[34] and the Biofire FilmArrayAU : PleasenotethatPLOSdoesnotallowtrademarksðor1ÞorcopyrightsymbolsðÞinthemanuscript:Blood Culture Identification panel [35], which have improved

the sensitivity and speed of diagnosis.

Fig 3. Current and future diagnostics in the integrated management of childhood febrile illness. One of the most common and important diagnostic

challenges in SSA is the management of fever in young children. WHO recommends that primary healthcare workers in resource-limited settings use a

syndromic approach for managing childhood febrile illness, incorporating a mRDT in malaria endemic countries (current situation, pink area). Initial

management involves a triage step to establish if the child is seriously ill, based on clinical danger signs; if these are present, the child is given antimalarial

treatment, antibiotics, and referred urgently to a facility where additional diagnostic tests and treatments are available. If a child is not seriously ill, then a

mRDT is performed and, if positive, the child is treated with antimalarials. If the mRDT is negative, the child is evaluated for clinical signs indicating a

bacterial infection (there are currently no RDTs to confirm this at the point of care) and receives antibiotics if these are present. If symptoms are persistent,

then the child is referred to a higher-level facility for further assessment. Many new diagnostics and decision support tools are currently being developed to

improve outcomes by addressing weaknesses at each stage in this process (grey track). Additional diagnostics are in development to improve the speed or

accuracy of diagnosis in the referral healthcare facilities with clinical laboratories. New digital molecular diagnostic devices (green track) have the potential to

integrate accurate diagnosis, evaluation of severity, and decision support in a single device and, through modular design of diagnostic cartridges, could

provide solutions throughout the patient journey. Connectivity means that data can be shared between facilities to support patient care and for public health

decision-making. mAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs3and5:Pleaseverifythatallentriesarecorrect:RDT, malaria rapid diagnostic test; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pdig.0000064.g003
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Quantification of the host response to infection is often used as a complementary approach

to pathogen detection, because different pathogens elicit different immune and inflammatory

responses. C-reactive protein (CRP) and procalcitonin, which are typically more elevated in

blood during bacterial than viral infections, have been incorporated into RDTs [36,37]. How-

ever, it is difficult to define universal cutoffs for bacterial infection, particularly in malaria-

endemic settings in SSA [38,39], where malaria can also cause an intense inflammatory

response. Recently, multianalyte protein biomarker panels have been developed to increase

diagnostic accuracy for bacterial infection [40], and there is promising evidence that patterns

of host RNA expression in blood can distinguish between different causes of infection with

high accuracy [41].

Accurate, granular and timely data on disease detection are increasingly recognised as

essential to achieve the aims of SDG3 [42,43]. Such epidemiological data can be used to target

interventions where they are most needed, to develop long-term policies, and also to identify

emerging infectious disease threats [44]. Results of most essential infectious disease diagnostics

currently used in Africa cannot be compiled in an automated, standardised, and interoperable

fashion [45]. For example, malaria RDT or microscopy results may only be recorded in paper

notebooks, limiting the speed and accuracy of information transfer from detection to report-

ing [46]. Linking clinical diagnosis to surveillance is increasingly recognised as a priority to

improve disease control and elimination [42,47].

The gaps and limitations of current diagnostics and the systems that rely on them have

stimulated intense innovation [11,48] (Fig 3 and Table 1). In 2003, WHO developed the

Table 1. Translation of molecular detection towards point-of-care digital diagnostics.

Type of

molecule

detected

Examples of current

technology

Limitations of

current technology

Selected benchtop digital platforms in development but not yet in widespread use in Africa

Digital platform

(manufacturer)

Targets Key characteristics Prospects for portable

point-of-care digital

diagnostics

Nucleic acid:

• DNA
• RNA

Nested PCR

qPCR

rt-PCR

LAMP

RT-LAMP

Paper-based PCR

NGS

Most require skilled

operators

Expensive

instrumentation

Require secure

power supply

Time consuming

Long turnaround

time

Paper-based PCR is

affected by working

conditions like pH

and temperature

NGS requires

sophisticated

infrastructure

HostDx Fever

(Inflammatix)
Host response

RNA profiles

PCR based

- Sample to answer on a

solid-state heating/cooling,

extraction and amplification

platform

- Rapid analyte

quantification without need

for standard curve

Possible, but requires

miniaturisation of RNA

detection and

computational processes

into a handheld format

LabDisk

(SpinDiag)
DNA markers of

AMR

- MRSA, VRE,

ESBLs,

Carbapenem

resistance

Nested PCR

Based on centrifugally

operated microfluidics on a

disposable cartridge,

allowing for a rapid sample

to answer PCR test

- Potential for software to

support algorithm-based

decision

- Easy data interpretation

Centrifugal process will be

challenging to miniaturise

into a handheld device

BLINK ONE

(BLINK)

DNA/RNA

Protein

Cells

PCR based

Fully integrated on cartridge

and encoded with reactor

beads for amplification of

different analytes to produce

highly multiplexed

molecular assays with single

molecule sensitivity

Instrument footprint is

suitable for health centres

with laboratory facilities

and may not be easily

miniaturised into

handheld test devices

(Continued)
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Table 1. (Continued)

Type of

molecule

detected

Examples of current

technology

Limitations of

current technology

Selected benchtop digital platforms in development but not yet in widespread use in Africa

Digital platform

(manufacturer)

Targets Key characteristics Prospects for portable

point-of-care digital

diagnostics

Protein:

• Pathogen
antigens

• Antibodies
• Host

inflammatory
response
proteins

Immunoassays�

Immunohistochemistry

Bioassays�

Lateral flow assays�

Agglutination tests

Variable analytical

performance

Sometimes complex

sample processing

Sometimes time

consuming

OJ-Bio HIV biomarkers

(anti-gp41 and

anti-p24)

Digital platform based on

SH-SAW biosensors which

uses microelectronic

components to detect HIV

antibodies without any need

for multistep washing or

component labelling.

Smartphone and wireless

connectivity with facile

electronic data capture

A good model for

miniaturised digital

diagnostic devices, which

successfully combines

rapid biomarker detection

and electronic data

sharing. The capability of

geo-location is beneficial

for faster access to therapy

for persons who test

positive or counselling for

those who test negative

abioSCOPE

nanofluidic

immunoassay

technology

(Abionic)

- Sepsis risk

markers

- Emerging virus

panel

- GI panel

- STI panel

- AMR panel

Immunoassays

Nanofluidic technology with

laser detection/

quantification of

immunocomplexes

Laser detection may be

difficult to integrate into a

portable device; however,

the analysers allow real-

time data connectivity (by

encrypted data transfer) to

external data management

system by barcode

scanning

Spinit centrifugal

microfluidic

platform

(biosurfit)

- CRP

- HbA1c

Immunoassays performed

with surface

plasmon resonance using a

polarised laser beam;

Clinical chemistry

measuring

absorbance at multiple

wavelengths by means of

LEDs

Haematology via an

integrated

Microscope and standard

dyes

- Fully integrated on

cartridge

- Rapid turnaround time (4

to 12 minutes)

Current architecture is

unsuitable for

miniaturisation into

handheld POCT

ImmunoPoc/

ImmunoXpert

(MeMed)

Host immune

signatures (CRP,

TRAIL IP-10)

Immunoassays

ELISA-based assay with

superior accuracy (compared

to clinical parameters) in

differentiating bacterial and

viral infections

Suitable for

miniaturisation into

portable immunocomplex

detection tests with the

possibility to integrate

provide real-time data

connectivity

DPP Fever panel

(Chembio
Diagnostics)

Malaria, Dengue,

Ebola, Lassa,

Marburg,

Chikungunya

Syphilis, HIV, and

SARS-CoV-2

Immunoassays

Cost-effective

chromatographic

immunoassay technology

with a digital reader that

reports a test electronically

enhanced multiplex

capability up to 8 biomarkers

Handheld analysers and

small sample volumes are

suitable for POCT in

LMICs. Upgraded

accessory smart digital

readers can provide real-

time connectivity and

enhance use experience

(Continued)
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Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliver-

able to end-users (ASSURED) criteria to guide the development of new diagnostics [49]. How-

ever, there has been no overall coordination of new diagnostic development [50], resulting in a

proliferation of different tests being developed for different pathogens and different healthcare

settings, potentially creating an emerging integration challenge. Furthermore, the ASSURED

criteria, and most target product profiles (TPPs) for individual tests, do not specify the need

for an intrinsic link between diagnosis and surveillance of infection [51], resulting in a recent

call for new “REASSURED” criteria, including real-time connectivity of data in future specifi-

cations [13].

Current status and potential of digital molecular diagnostics

The feasibility of incorporating molecular assays into simple, automated systems is now well

established, with many examples of small benchtop devices emerging (Table 1), but the next

generation of digital molecular diagnostics will refine these approaches to meet the REAS-

SURED criteria as truly portable point-of-care tests with real-time connectivity. Significant

efforts have been directed towards the development of lab-on-chip platforms for the rapid

point-of-care detection of infection, although challenges still remain. These challenges include

efficient, low-cost, and rapid nucleic acid extraction; sensitive and specific detection of the tar-

get pathogen or host-response; and creating a digital record of the test. Innovative solutions

Table 1. (Continued)

Type of

molecule

detected

Examples of current

technology

Limitations of

current technology

Selected benchtop digital platforms in development but not yet in widespread use in Africa

Digital platform

(manufacturer)

Targets Key characteristics Prospects for portable

point-of-care digital

diagnostics

Small

molecules:

• Drugs
• Toxins
• Chemicals

Blood biochemistry�

Clinical chemistry�

Spectroscopy

Chromatography

Colorimetry;

Mass spectrometry

Variable analytical

performance

Complex sample

processing

Expensive

instrumentation

Require skilled

operators

Evidence

MultiSTAT

(Randox)

- Drugs

- Drug metabolites

- Single molecule

biomarkers

Immunoassays

- Combines a biochip array

technology with

chemiluminescence

- Wide range of forensic

matrices

- Multiplexing (up to 44

analytes)

- Short turnaround time (17

minutes)

- Sample processing not

required

Potentially suitable for

miniaturisation into lab-

on-chip digital diagnostics

FINDER digital

microfluidics

platform (Baebies)

- Total serum

bilirubin

- Albumin

- G6PD

Biochemical, enzymatic, and

immunoassays

- Based on digital

microfluidics fully integrated

in a disposable cartridge

- Low sample and reagent

volumes

- Multiplexing

Potentially suitable for

miniaturisation into lab-

on-chip digital diagnostics

�Relatively widespread in African laboratorieAU : Pleasenotethatasperstyle;donotuseInc:;Ltd:; etc:; inthemanuscriptexceptasappropriateintheaffiliations:s.

AMR, antimicrobial resistance; CRP, C-reactive protein; ESBL, Extended Spectrum Beta Lactamases; G6PD, glucose-6-phosphate dehydrogenase; GI, gastrointestinal;

HbA1c, glycated haemoglobin; IP-10, interferon gamma induced protein-10; LAMP, loop-mediated isothermal amplification; LED, light-emitting diode; LMIC, low-

and middle-income country; MRSA, Methicillin-resistant Staphylococcus aureus; NGS, next generation sequencing; PCR, polymerase chain reaction; POCT, point-of-

care testing; qPCR, quantitative polymerase chain reaction; RT-LAMP, reverse-transcription LAMP; rt-PCR, reverse transcription PCR; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2; SH-SAW, shear horizontal surface acoustic wave; STI, sexually transmitted infection; TRAIL, TNF-related apoptosis inducing

ligand; VRE, Vancomycin-Resistant Enterococcus.

https://doi.org/10.1371/journal.pdig.0000064.t001
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have emerged using microfluidic cartridges for sample preparation and protein or nucleic acid

detection [52–54], paper-based microfluidic and detection systems [55–58], and electrochemi-

cal biosensors [59–61]. Relatively few emerging digital diagnostics already include a dedicated

mobile phone-based application for digital records [58,62], but this will inevitably increase as

technologies advance towards clinical use.

Digital molecular diagnostics are more complex to develop and will be more expensive to

produce than competitor lateral flow RDTs, but they offer numerous advantages that could

compensate for their cost. Digital molecular diagnostics can simultaneously measure multiple

analytes (multiplexing) with real-time transfer of fully quantitative raw and integrated data,

which can be presented in a variety of formats tailored to the user. Multiplexing, to detect mul-

tiple pathogens, biomarkers, or their combinations, can readily extend the range of digital

molecular diagnostic tests on small volume samples [41], using innovations in microfluidic

sample processing [63], and feature extraction from the quantitative data generated during

molecular detection [64]. Therefore, panels of relevant pathogen genes, biomarkers to distin-

guish between multiple classes of pathogen [41,65], and biomarkers of severity [66,67] could

be combined in a single test. This creates the possibility of personalised treatment, for example,

detecting both malaria parasites and molecular markers of resistance to common antimalari-

als, allowing the most effective treatment to be selected; or detecting glucose-6-phosphate

dehydrogenase deficiency mutations at the same time as Plasmodium vivax detection, to indi-

cate the safety of radical cure with primaquine or tafenoquine [68,69]. Whereas current lateral

flow RDTs give binary (positive or negative) or, at best, qualitative (e.g., negative, equivocal,

weak positive, and strong positive) results, full quantitation of analytes by digital molecular

diagnostics can provide additional information on pathogen load or the extent of derangement

of biomarkers, which can, in turn, indicate whether a pathogen is likely to be the cause of an

illness [70], inform prognosis [71], or indicate transmissibility [72,73]. Evolving approaches to

diagnosis based on integration of quantitative data from multiple analytes, such as disease risk

scores using gene expression levels [65,74], could easily be implemented in digital diagnostics.

Data integration does not have to be limited to sample measurements; user-specified data

such as the age of the patient (which guides normal ranges of analytes [6]), or even a clinician’s

estimate of the pretest probability of a diagnosis [75], could also be incorporated. Digital diag-

nostics could also have tuneable characteristics to allow the same device to have multiple pur-

poses. For example, in “screening mode,” the highest possible sensitivity would be used to

detect low-level asymptomatic malaria parasite infections in a community test-and-treat pro-

gramme, whereas in “clinical mode,” the same device would only report infections with a para-

site density above a certain threshold associated with symptomatic illness that requires

treatment (although all data would be available for export). Similarly, the results delivered by

the device could be tailored to the user, with simple results and instructions for community

health workers and more nuanced results with quantitative data or probabilities of diagnoses

available for experienced clinicians. Integrated decision support could facilitate modular test-

ing, where the results of one test may produce a recommendation to run further tests using dif-

ferent test cartridges.

Combining data integration and real-time connectivity, complete data generated by digital

diagnostic devices can be exported and shared quickly enough to influence decision-making:

for quality control; for logistical purposes such as matching diagnostic use with resupply of

health facilities; and using geolocation data to monitor trends in diagnoses over a range of geo-

graphic scales. As data accumulate, it will become possible to use automated algorithms to

detect patterns of results, identifying or predicting outbreaks, and allowing additional

resources to be targeted to where they might be most needed. Eventually intelligent systems

may be developed using accumulated data from patients and the environment to feedback to
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digital diagnostic devices, adjusting device performance to better suit the local context. Maxi-

mising the value of connectivity and data is likely to be the most important determinant of suc-

cess of digital diagnostics over current RDTs.

Considerations for bringing digital molecular diagnostics into practice

Despite their potential benefits, there are significant challenges for implementation of digital

molecular diagnostics, with high risk of failure if the complexities of health systems and the

diagnostic ecosystem are underestimated [76]. Some lessons can be learned from the develop-

ment of emerging portable RDT readers, which provide a real-time connectivity solution for

lateral flow devices [77]. The development of these devices demonstrates the importance of

combining technical development with assessment of the need (use case) for new technology,

and its desirability, feasibility, viability, and sustainability in the intended use settings. Other

work has shown the importance of consulting and establishing partnerships with intended

users and stakeholders (Fig 4) [78–80] to develop a strong value proposition for the new diag-

nostic. Wider technological, economic, and political constraints of the current diagnostic

Fig 4. Understanding the perspective of users and stakeholders. To produce new digital diagnostics that will be widely used, it is important to understand the

perspectives of all stakeholders involved in and impacted by their implementation. Understanding the perspectives of patients and healthcare workers is important,

but consideration must also be given to the broader health system, government organisations, the commercial sector, international funders, and policy makers. This

may start with mapping who the stakeholders are, identifying their needs, discussing their expectations for a new diagnostic, and engaging them throughout product

design, development and evaluation in a codesign process.

https://doi.org/10.1371/journal.pdig.0000064.g004
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ecosystem and the cost–benefit ratio of new technology also need to be considered early in

development (Fig 5) [81–83].

Formulating all of these considerations will allow an appropriate TPP to be established (Fig

5) [80], which specifies the characteristics required for the diagnostic device across domains

from accuracy to cost, from power consumption to connectivity. TPPs for many diagnostic

tests have already been developed by policy makers and international organisations, such as

WHO and FIND [11,48,84], where standardised performance or alignment with policy aims is

required. Many good diagnostic concepts fail because they cannot meet the TPP for their

intended use [85], but meeting a prespecified TPP does not guarantee success, and should not

replace the need to assess and understand the diagnostic ecosystem. Given the unique features

of digital diagnostics, TPPs will need to include specifications for the data that will be gener-

ated, including measures to ensure data privacy and security [86,87]. Meeting the TPP is not

the end of development, but a step to further optimisation through codesign and development

with healthcare providers, service users, and policy makers, which will maximise acceptability,

practicality, and, ultimately, adoption into practice (Fig 5) [78].

An iterative process of codevelopment and design can create a fit-for-purpose product, but

will not guarantee widespread and sustainable implementation [88], nor the intended transfor-

mation of the diagnostic ecosystem. Beside usability, the prototype needs to be developed

through levels of technology readiness [89], with rigorous testing, to ensure the TPP is

achieved within the intended use environments, where accuracy, turnaround time, simplicity,

portability, and cost, become increasingly important. It is important to demonstrate the diag-

nostic performance of the new tests in their intended use setting and also in comparison to

gold standard diagnostics [90].

Crossing from development to implementation requires that digital molecular diagnostics

are scalable, economically viable, have the evidence base required to achieve regulatory

approval, and have endorsement at national (and often international) levels in the form of

guidelines and policies [91]. A “reuse and improve” approach can facilitate this, by repurpos-

ing and enhancing existing technologies and infrastructure, which are already familiar in the

use setting. This can reduce the need for training and support for the use of the new diagnos-

tics [92], accelerate development and testing, and minimise costs [93]. Digital molecular diag-

nostics can capitalise on the success of mobile phones in Africa [92], to facilitate real-time

connectivity and to provide a familiar user interface. Around 75% of the SSA is already cov-

ered by 3G signal, and 50% (and rapidly expanding) by 4G signal, far exceeding hard-wired

connectivity [94–96]. Bringing faster, cheaper, and more efficient connectivity to remote areas

is a parallel field of intense innovation (e.g., see, https://www.janga.la) and creates opportuni-

ties for partnerships that will be major enablers for the success of digital diagnostics. Further-

more, many of the mass-produced electronic components used in mobile phones can be used

to build digital diagnostics, ensuring plentiful supply, preoptimisation for low power con-

sumption, and economies of scale. Although most mobile phones are currently imported into

SSA, some smartphones are now being fully manufactured in SSA, suggesting that

manufacturing of digital molecular diagnostics in SSA is also a realistic aspiration [96]. Mobile

phones have also become trusted financial instruments in SSA, providing simple, accessible,

and cheap tools to transfer money between phone users [97,98]. Building on these principles

could enable new models of funding for digital diagnostic tests where mobile payment systems

can be leveraged to connect patients, healthcare providers, and healthcare payers (such as

insurers and donors) [99].

Each SSA country has its own regulatory approval processes for new in vitro diagnostics,

although approval is often facilitated if diagnostics have already met respected international

standards and may become more streamlined with establishment of an African Medicines
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Agency [100]. The route to approval for pathogen detection tests is relatively straightforward,

because it is possible to demonstrate analytical sensitivity and specificity on reference material

and in comparison to gold standard tests. The route to approval of transformative host

response based–diagnostics is less clear, especially if the intention is that the device provides

both aetiological diagnosis and decision support. Evidence for regulatory approval may require

large clinical Phase III trials that demonstrate both safety and efficacy of using this approach to

guide patient management in situations where gold standard diagnosis is possible and also in

the intended use setting where the gold standard may not be available. Dialogue with regula-

tors to establish the likely requirements will be needed early in the development process.

Additional national and international regulations may also apply to the use and sharing of

data, and regulations governing patient identifiable information will typically be separate from

regulations governing in vitro diagnostics. Nevertheless, data sharing for patient benefit, and

Fig 5. A roadmap for digital molecular diagnostic development. The development of new diagnostics is not linear, although it can be imagined

as a progressive and staged process. At the outset, the current gaps and needs should be assessed and use cases developed. Context-appropriate

TPPs should be developed in partnership with the potential users. Desirability (will people want to use it?), feasibility (is it technically possible?),

viability (what is affordable?), and sustainability (long-term funding, readiness of and integration into the health system) should also be

considered from the start of development. Prototype devices meeting the TPP are tested and refined through an iterative codevelopment and

codesign process with users and an increasing number of other stakeholders who influence the diagnostic ecosystem. To bridge from prototype to

implementation, scalability must be addressed, regulatory approvals gained, and continuous evaluation should ensure sustainable business models

and compatibility with the evolving digital infrastructure. TPP, target product profile.

https://doi.org/10.1371/journal.pdig.0000064.g005
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for collective exploitation between stakeholders and communities, is fundamental to improv-

ing healthcare efficiency and addressing inequalities [101]. Integration of digital diagnostics

with existing open-source health information systems, such as the increasingly popular DHIS2

(https://dhis2.org), will help to resolve many regulatory and security issues, as well as facilitat-

ing scale-up. Analyses across multiple data platforms could be facilitated using a federated

learning approach [102], in which analysis algorithms rather than data are transferred. This

might produce, for example, granular but not precise geolocation of detected cases of a disease,

such that privacy is not compromised, but interventions can be targeted at an appropriate

scale.

Large-scale implementation of digital molecular diagnostics requires changes in systems

and behaviour, under the influence of policy makers and funders, and with support from the

commercial sector. Therefore, developers also need to consider how they can engage with

these groups to guide development of a product that will align with policy and commercial sec-

tor interests and justify investments that may be required to bring new diagnostics to market.

National governments often look to international organisations such as WHO and the Africa

CDC for recommendations before changing diagnostic policy, and those policy changes may

be easier if funding is also made available, through channels such as the Global Fund. There-

fore, setting diagnostic development in the context of existing international policies and strate-

gies, and seeking to engage with policy makers and funders, is also important. Commercial

partners will be needed for sustainable implementation—potentially lucrative roles if wide-

spread implementation is successful. However, if digital diagnostics replace other diagnostics

and alter the use of other commodities in the health system, then other commercial entities

risk losing business. Therefore, new digital molecular diagnostics may not be universally wel-

comed, and may even be obstructed, and this should be anticipated in planning for scale-up.

Conclusions

Innovations in digital molecular diagnostic technology have set the scene for the next genera-

tion of point-of-care tests, which could catalyse transformations in healthcare delivery. SSA

could reap great benefits from early adoption of digital molecular diagnostics, using them to

accelerate progress towards UHC and SDG3. Despite clear potential for widespread benefits

from digital molecular diagnostics, successful implementation presents major challenges that

must be addressed, including readiness and willingness to change across many sectors, gener-

ating stakeholder and funder support to catalyse this change, and negotiating the practical

challenges of physical, digital, and regulatory infrastructure.
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