

a decade in communicable disease control and child health

Malaria surveillance efforts in Cambodia

Dr Arantxa Roca-Feltrer Joint International Tropical Medicine Meeting Bangkok, December 2013

PREVENTION

DIAGNOSIS

TREATMENT

 Drug resistant *P. falciparum* malaria

Source: WHO

PREVENTION

DIAGNOSIS

TREATMENT

- Drug resistant *P. falciparum* malaria
- Forest related malaria and potent exophagic vectors

Source: WHO

PREVENTION

DIAGNOSIS

TREATMENT

- Drug resistant *P. falciparum* malaria
- Forest related malaria and potent exophagic vectors

 Cross border movement, migration of labour force

Source: WHO

PREVENTION

DIAGNOSIS

Source: WHO

PREVENTION

DIAGNOSIS

TREATMENT

The Cambodian National Strategic Plan for Elimination of Malaria

Short-term (by 2015): To move towards pre-elimination of malaria across Cambodia, bringing level of transmission below 2 cases per 1,000 population for most parts, with special efforts to contain artemisinin resistant *Plasmodium falciparum* malaria.
Medium-term (by 2020): To move towards elimination of malaria across Cambodia with an initial focus on *P.falciparum* malaria and ensure zero deaths from malaria.
Long-term (by 2025): To achieve phased elimination of all forms of malaria in Cambodia.

PREVENTION

DIAGNOSIS

TREATMENT

Malaria trends in Cambodia

PREVENTION

DIAGNOSIS

TREATMENT

Malaria trends in Cambodia

Source: Epidemiology Unit, CNM

PREVENTION

DIAGNOSIS

TREATMENT

Malaria surveillance system prior to 2009

Health Information System (HIS):

- Malaria data available down to health facility level
- Lab data not directly linked to the patient

Limited Day 3 information from sentinel site surveillance

Risk stratification based upon distance from the forest using outdated maps (heavy deforestation in areas of the containment zone)

PREVENTION

DIAGNOSIS

What information was required?

1. Demographic and malaria case data for...

Monthly **village level data** to be used for statistics, planning and village level stratification, including:

- No. of malaria cases by species (*Pf, Pv*), age and sex of the patient
- No. of severe malaria cases
- No. of malaria deaths
- Treatments given

Planning interventions such as mosquito net distribution

Increased the number of villages with of VMWs and MMWs to over 1600

Developed a database to process malaria data from VMWs, health facilities and data relating to mosquito net distribution and management (**MIS Database**)

- Installed in all 45 targeted Operational Districts
- Individual case data for all patients seen by VMWs and at public health facilities

DIAGNOSIS

TREATMENT

Integration of facility level malaria data from the new online HIS with the VMW and bed net data from malaria MIS database

PREVENTION

DIAGNOSIS

TREATMENT

- Increased the number of villages with of VMWs and MMWs to over 1600
- **Developed** a database to process malaria data from VMWs, health facilities and data relating to bed net distribution and management (**MIS Database**)
 - Installed in all 45 targeted operational districts
 - Individual case data for all patients seen by VMWs and at public health facilities
- Integration of facility level malaria data from the new online HIS with the VMW and bed net data from malaria MIS database
- Creation of a "Malaria Bulletin"

Cambodia Malaria Bulletin (available at www.cnm.gov.kh)

SEPTEMBER 2013 BULLETIN, DATA TO 3RD QUARTER, CNM, CAMBODIA

Estimated coverage with LLIN or retreated mosquito net	Target ¹	Mobile ²	National Surveillence data for the period Jan - Sep										
No. of persons at risk of malaria	3,348,421	448,273	Indicators		HIS			VMW		Total			
No. of LLIN distributed YTD	2,072	3,682	marcators	2012	2013	Change	2012	2013	Change	2012	2013	Change	
No. of LLIHN distributed YTD	1,607	467	Malaria cases	35,386	18,023	-49%	22,599	13,270	-41%	57,985	31,293	-46%	
No. of conventional nets distributed and retreated YTD	30,903	300	Malaria Incidence	2.41	1.20	-50%	19.20	10.88	-43%	3.94	2.08	-47%	
No. of long lasting nets distributed in last 3 years	2,959,334	4,149	Malaria deaths	35	7	-80%	0	0	0%	(35) (7)-80%	
Estimated coverage with LLIN / treated net (1 net / 1 pers)	89%	1%	Mortality rate ⁴	0.24	0.05	-80%	0.00	0.00	0%	0.24	0.05	-80%	
¹ Pop of target villages ² Mobile pop (est from census)			³ Cases per 1000 pop	-	⁴ Deaths	per 100,000) рор	^{4 5} VMW r	ates uses	/MW villag	e popula	tions	

TRENDS IN SURVEILLANCE

Treated malaria cases from HIS and VMW by month

Severe malaria cases and deaths from HIS by month

-- - - Severe -- - Deaths

PREVENTION

DIAGNOSIS

TREATMENT

Province level surveillance trends – District Malaria Bulletin - Beyond Garki

a.

R

DISTRICT MALARIA BULLETIN Related an and the state of the second state annan Inis in 11a anni 2an - 2an In domesticated and 1.1...... Bo. of this initiality with Ba. al III BE Intelated WT B M 10 33 44 38 -142 Bo, of company materials had a failed of a set of the s M P1 No. of seconder and children and 2 more Adapted composite title 4 functed and place ------Legend -a-N -a-N -----in the second state state and state and states in the second states in t

2	Villages with Highest Incidence of Malaria Pailin, Jan-Jun 2012																				
3																					
					Ber	arte	4 B T	Heals	h Fa	cili	tt				R.	t	4 B T	Tille		lalari	
4										т.		-					1 86	T.			Ē
-			-1:			G					Ci	⁻		Ci,	I		G	l		Ci,	١.
6				2011	•••			••	••	••	··· •·	-	•••	•		•••	•		•••	-	I.
7		2811	2812		•	I	· ·	•		-	. I	<u> </u>	•	I	+-	-	I		•	I	⊢
9	On Chiera Krum	1.17	8.87	1	15	-17X	Ι,	5	-44X	,	11 11X	;		-188X			I X	1 2		-188X	L
10	Preg HangKal	1.11	8.12	12	18	-17X	6	2	47X	5	1 112	1		-58X		1	188X	6	2	-67X	L
11	On Reivi	1.21	8.25	24	15	-55X		1	188 X	24	15 -38X	:	14	367X	I	,	388X	۰ ا	11	257X	L
12	O Terag Kram	8.13	1.15	1	1	EX.	1	1	IX		I IX	1 1	1 12	- 1100X	I	2	2112	• •	- 11	4000X	L
13	Krambab Lro	8.55	1.54	13	15	EX.	•	<u>،</u>	∎X.		3 8X	17	21	- 48X	2		-400X	13	- 11	58X	L
14	Phase Dueburg	1.75	1.74	•	- 1	-11X	6	4	-33X		4 33X	34	27	-21X	•	2	-58X	222	22	EX.	L
15	Phase Spare	8.15	1.15	1	•	SEEX.	· ·		IX	1	4 388X	1 1		2013	I	2	211X	• •	1	- 101X	L
16	0 T. T	1.16	1.15		1	-188X	•		IX		1 188X	'	: 1	-58X	'		BX.	1	- 1 <mark>.</mark>	BX.	L
17	0 Kling	1.33	1.0	2	- 4	111X	· ·	- <u>-</u>	IX.	2	4 188X	<u>ا</u>		101X	2	1	-58X	2	5	158X	L
18	Kharb Haaab	8.25	8.25	,	1	-67X	· ·	1	188 X		1 -100X	'	: 6	288X	I	2	288X	2	- 4	- 188X	L
19	O. Prres	1.43	1.45	۰ I	Z	-467 X	· ·		IX	5	2 -67X	1	1 27	35X	I	1	188X		25	245X	L
20	Yeal Cheng	8.31	8.92			EX.	· ·		IX		1 IX	'	: 6	288X	I	2	288X	2	- 4	- 188X	L
21	Piak Kiri	1.67	1.61	1	1	EX.	· ·		IX.	1	1 IX	'	1 11	267X	1	1	EX.	2	- 11	GIX	L
22	Par Hay Khure Chenny	1.34	1.15	,	- 4	33X	I	1	111X		1 IX		2	1112	L 1		EX.	1	2	188X	L
23	Phirus Shee	1.07	1.0	1	- 1	-188X	I	- H.	IX.	.	1 - HIIX			1112	ı.		TIX.	L •	- I	THE	L
24	Pag Sei	1.0	1.0	1	- 1	788X	I		UX.	1	1 711X			-100X	5		-188X	1.1	- I	-10X	L
25	Andrey Pir	1.67	1.6		1	111X	I	1	HEX.		T IX	1 - 1	: 1 9		_	1	- 101X	2	- 1	358X	L
26	Audaug Thaur	1.51	1.51			BX.		- 11	HX.		L 1X			1X	.	2	211X	L •	. 1	-65X	L
27	0 Tark Phirus	1.0	1.43		- 4	HIX		T	IX.		4 488X		ī 📕	388X	Γ.		EX.	Γ.	- 1	388X	L
28	Kagash	1.31	8.51	2	2	BX.	1	- I <mark>-</mark> 2	uux	1	2 188X		2	288X	I		EX.		2	288X	L
29	Tark Phan	8.61	8.62	1	- 1	-188X		- I	HX.	1	1 -100X	'		111X	I		BX.	I	- 7	200X	L
30	Par Hay Khure Thanay	1.25	8.24	1	2	-74X	1	- 1 <mark>-</mark> 2	uux	5	2 -67X	'	1 1	101X	I		BX.			BX.	L
31	Taal Khira	1.24	8.24	1		2883	I		IX.	1	3 288X	'		EX.	I		BX.			EX.	L
32	On Chrylen	1.14	8.54	•	- 4	35X			IX		4 33X	'		BX.	I		BX.	I	<u>ц</u>	BX.	L
33	Phase Chronk	1.11	1.11		- 1	1883	I		IX		1 188X	;	: 1	-SEX	I		EX.	2	1	-SEX	L
34	0 Saar Sdri	1.6	1.67	1	1	BX.	I		IX	1	1 IX	•		EX.	I	1	101X	•	,	-25X	L
35	Tb	1.0	1.0	, I	- 4	33X	I		IX		4 332	'		EX.	I		BX.			EX.	L
36	0. A.d	1.55	8.57		5	SHEX	I	- I	IX.		S SEEX	'		EX.	I		BX.		۰.	BX.	L
37	Pung Ro Lorm	1.81	1.82	•	5	25X	1	- 1 <mark>-</mark> 2	uux		5 57X	;		101X	I		BX.	2		SEX	L
38	Dei Keakan	1.65	1.45	•	1	-75X	1	- 1 <mark>-</mark> 2	uux		1 -67X	;		SEX	1		- 488X		- 1	388X	L
39	Par Thuri	1.45	1.45	,	•	-45X	1	- 1 <mark>-</mark> 2	uux	5	4 -55X	;		-188X			IX.	,	- I <mark>I</mark>	-188X	L
40	On Chrylingh	1.0	1.0	1	- 4	388X		- 1	188X	1	200X	1		BX.			EX.		- 1	BX.	L
41	Taal Kiyaa	1.51	8.51	2	- 4	1112	2	- 1 <mark>-</mark> 2	uux.		4 4HX	1		8X			EX.			8X	L
42	51.	8.25	8.27		2	2113		- E	IX.		2 288.2			EX.			EX.			BX.	L
43	Samba	1.11	8.82		2	2113		1	111X		1 18X			(11X		2	2112		2	2012	L
44	Phone Perul	1.21	1.25	1	2	1113	1	- 1 <mark>-</mark> 2	HIX		2 288.2			BX.			BX.			BX.	L
45	Keankak Kenn	1.21	1.22	,	,	-22X		2	XIIX.		5 -44X		1 1	1012			EX.		1	1012	L
46	Theri	1.6	1.67	1	1	EX.			IX.	1	1 IX		1 2	1112			IX.	1	2	1012	
47	Perez Prelil	1.71	1.75			-58X			IX.		5 -58X		1 2	-55X			IX.		2	-55X	L
48	Kana Phana	1.33	1.14	2	2	UX.	1	1	IX.	1	1 IX			IX.			IX.	l i		UX.	L
49					_			-		-			-						_		

PREVENTION

DIAGNOSIS

TREATMENT

Median malaria incidence (all species) by OD

Are the MDB and VMW system focusing on the right places?

Median malaria incidence (all species) by OD

Are the MDB and VMW system focusing on the right places?

Using data for planning... Work in progress

Re stratification of all at risk villages in Cambodia based on village level incidence. Currently updating village stratifications based on 2011 incidence data

	Period		No. of	Categori	ies 3	-	Incidence	Incidence (per 1000 pop)					a			x
	< 2011 ▶		No. of	HF Repo	orts	9	Category 1	>=	50			Lunid				
			No. of	Jul-Dec	Reports	4	Category 2	>=	10			Generate N	ew List			
	Province					· _	Category 3	>=	1							
L	Ratanak Kiri	•		Set D	Default							Apply Stratif	ication			
	Operational District		_							NOTE	Can or	nlv apply stratif	fication in the	OD MISUL		
	Ratanakiri	-								- HOTE	Carro	ily apply sealed		00110111		
Code	 Village 	Health	1 -	Рор 👻	Repts 👻	JulDec	VMWCa	as → H	HFCases -	- Inc	Ψ.	Category 👻	Suggest 🚽	NewCategory 👻	Excl	*
1604040400	Kam Bak	Kachanh		465	10		5			1	2.2	2		3 3		
1604040500	La En Sre	Kachanh		308	10		5	48			155.8	1	1	1 1		4
1604040600	Sre Meunthaing	Kachanh		203	10		5				0	1				4
1604050100	Phum Muoy (Trap	Kounmum		1543	12		6		1	.7	11	2		2 2		1
1604050200	Phum Pir (Trapea	Kounmum	1	988	12		6			5	5.1	2	3	3 3		1
1604050300	O Plong	Kounmum	1	2158	12		6		5	6	25.9	2		2 2		1
1604050400	Kor Hoksib	Kounmum	1	974	12		6			4	4.1	1	:	3 3		1
1604050500	Sangkum	Kounmum	1	731	12		6			1	1.4	2		3 3		1
1604060100	Phum Muoy (Trap	Kounmum	1	940	12		6			4	4.3	2		3 3		
1604060200	Phum Pir (Trapea	Kounmum	1	555	12		6			2	3.6	3	3	3 3		
1604060300	Phum Bei (Trape	Kounmum	1	1012	12		6			6	5.9	2		3 3		1
1604060400	Phum Boun (Wor	Kounmum	1	153	12		6				0	2				1
1604060500	Phum Pram (Wor	Kounmum	1	153	12		6				0	2				1
1604060600	Phum Prammouy	Kounmum	1	153	12		6				0	2				1
1604060700	Veal Chhke Hot	Kounmum	1	328	12		6			2	6.1	2		3 3		
1605010100	Ou Kan	Lumphat		443	0		0				0	2			1	/
1605010200	Srae Chhuk	Lumphat		588	0		0				0	2			V	/
1605010300	Sam Kha	Lumphat		439	0		0				0	2			1	
1605010400	Dei Lou	Lumphat		808	0		0				0	2			V	/
1605010500	Thmei (Chey Otd	Lumphat		776	0		0	82			105.7	2	1	1 1		1
1605010600	Lumphat	Lumphat		1060	0		0				0	3			V	1
1605020100	Sayas	Lumphat		680	0		0	12			17.6	1		2 2		
1605020200	Ka Laeng	Lumphat		203	0		0	13		1	69	1	1	1 1		
1605020300	Ka Nang Ket	Lumphat		447	0		0	13			29.1	1		2 2		•
Record: 🛯 🖣 🕯	of 314 🕨 🕨 🖂	🖹 No Filte	er Sea	irch	•											•

What information was required?

2. Real time data to faci	litate rapid response
Alert	Response
Real time data about individual patients still positive after 3 days (an indication of drug tolerance)	Patients to be interviewed to identify possible sites (hotspots) of transmission
Rapid identification of all Pf cases in drug resistant areas	Ensure appropriate testing, DOTS treatment (Malarone) and follow up
Real time data from health facilities about stock levels of \longrightarrow malaria drugs	To prevent stock outs and supply drugs on a timely manner

DIAGNOSIS

Use of mHealth technology to report malaria cases

PREVENTION

DIAGNOSIS

Is this enough?

FULL COVERAGE OF QUALITY INTERVENTIONS IN PRIORITY AREAS

- Action 1. Increase quality and coverage of key interventions in the private and public sector
- Action 2. Engage health and non-health sectors to reach high risk populations
- Action 3. Implement measures to ensure continuous and uninterrupted supply of essential commodities

TIGHTER COORDINATION AND MANAGEMENT OF FIELD OPERATIONS

- Action 4. Strengthen coordination of field activities
- Action 5. Monitor staff performance and increase supportive supervision
- Action 6. Promote the integration of containment, elimination and malaria control while maintaining the focus on resistance

BETTER INFORMATION FOR ARTEMISININ RESISTANCE CONTAINMENT

- Action 7. Improve collection and use of data to target operations
- Action 8. Fast-track priority research and refine tools for containment and elimination
- Action 9. Increase monitoring of antimalarial therapeutic efficacy and strengthen the therapeutic efficacy networks worldwide
- Action 10. Increase monitoring of insecticide resistance

REGIONAL OVERSIGHT AND SUPPORT

- Action 11. Enhance accountability and exchange of information
 Action 12. Build political support at all levels
 Action 13. Facilitate progress and regional cooperation on pharmaceutical regulation, production, export and marketing
 Action 14. Create regional community of practice on approaches to high-risk populations
- Action 15. Support cross-border coordination

PREVENTION

DIAGNOSIS

Is this enough?

6 Priority interventions:

- Insecticide treated nets
- ➔ Indoor residual spraying
- ➔ Early diagnosis and treatment
- Private sector interventions
- → Surveillance
- Behaviour change communication

Focus on evaluating responses to hotspots/outbreaks/ eventually single *Pf* cases Focus on reaching/monitoring **populations at risk and hard-to-reach populations** (e.g MMPs).

PREVENTION

DIAGNOSIS

Current gaps...

...relevant to malaria elimination

Integration of routine M&E data focusing on hard-to-reach populations into MIS

Current gaps...

...relevant to malaria elimination

Integration of routine M&E data focusing on hard-to-reach populations into MIS (e.g. RDS)

- Re-active/pro-active case detection including standardised methodologies
- Exploration of novel deployment strategies (e.g. FSAT) and endorsement of alternative indicators to transmission intensity (e.g. serology)
- Exploration of the role of subpatent parasitaemias (clustering?)

Way forward: reactive case detection- Pailin

Passive case detection Health facility

Village malaria worker

PREVENTION

DIAGNOSIS

TREATMENT

Way forward: reactive case detection- Pailin

Current gaps...

...relevant to malaria elimination

- Integration of routine M&E data focusing on hard-to-reach populations into MIS (e.g. RDS)
 - Re-active/Pro-active case detection including standardised methodologies
- Exploration of novel deployment strategies (e.g. FSAT) and endorsement of alternative indicators to transmission intensity (e.g. serology)
- Exploration of the role of subpatent parasitaemias (clustering?)
- Need indicators to evaluate the impact of primaquine regimens.
 (ACT plus primaquine ==> radical cure, reduced transmission and decrease ArtRes spread)
- Regional surveillance system/early warning system

a decade in communicable disease control and child health

www.malariaconsortium.org

Thank you

PREVENTION

DIAGNOSIS

TREATMENT