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Abstract

Background: Trachoma is a major cause of blindness in Southern Sudan. Its distribution has only been partially established
and many communities in need of intervention have therefore not been identified or targeted. The present study aimed to
develop a tool to improve targeting of survey and control activities.

Methods/Principal Findings: A national trachoma risk map was developed using Bayesian geostatistics models,
incorporating trachoma prevalence data from 112 geo-referenced communities surveyed between 2001 and 2009. Logistic
regression models were developed using active trachoma (trachomatous inflammation follicular and/or trachomatous
inflammation intense) in 6345 children aged 1–9 years as the outcome, and incorporating fixed effects for age, long-term
average rainfall (interpolated from weather station data) and land cover (i.e. vegetation type, derived from satellite remote
sensing), as well as geostatistical random effects describing spatial clustering of trachoma. The model predicted the west of
the country to be at no or low trachoma risk. Trachoma clusters in the central, northern and eastern areas had a radius of
8 km after accounting for the fixed effects.

Conclusion: In Southern Sudan, large-scale spatial variation in the risk of active trachoma infection is associated with
aridity. Spatial prediction has identified likely high-risk areas to be prioritized for more data collection, potentially to be
followed by intervention.
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Introduction

Trachoma, caused by the bacterium Chlamydia trachomatis, is the

most common infectious cause of blindness and the leading cause

of preventable blindness worldwide [1,2]. The disease is easily

transmitted through transfer of ocular secretions infected with C.

trachomatis to the eyes of an uninfected individual by flies, hands,

towels or sharing of other personal items. Repeated infection with

C. trachomatis leads to scarring of the conjunctiva and eventually

entropion, causing the lashes of the inwardly-turned eyelid to

abrade the corneal surface, a condition referred to as trichiasis

[3,4]. Unless eyelid deformation is managed surgically, trichiasis

causes irreversible scarring of the cornea leading to corneal opacity

and, eventually, blindness. Trachomatous trichiasis (TT) in

children is an indication of high-intensity transmission.

Like all other neglected tropical diseases (NTDs) trachoma is

associated with poverty [5,6], as well as poor hygiene [7,8].

Prevention is partly based on improving personal hygiene by

promoting facial cleanliness and providing clean water for face

washing, and promoting the safe disposal of human faeces, thereby

reducing fly abundance [9]. Facial cleanliness and Environmental

improvement form two of the four components of the World

Health Organization (WHO) recommended ‘‘SAFE’’ strategy for

trachoma control, which also includes Surgical correction of

trichiasis and mass drug administration (MDA) of Antibiotics in

endemic communities [10].

Studies have shown trachoma risk to be associated with

attributes of the physical and social environment [8]. Risk factors

include environmental aridity, nomadic pastoral livelihoods (i.e.

predominantly livestock-rearing), increasing distance from water

sources and household crowding [7,11–13]. Given that environ-

mental factors are important drivers of trachoma risk, it is

plausible to predict the spatial distribution of trachoma using

statistical associations between disease prevalence and environ-

mental variables. Linkage of trachoma survey data to environ-

mental variables can be performed in a geographical information

system (GIS). Statistical models can then be used to estimate the

relationship between trachoma risk and environmental variables,
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and to predict trachoma risk in non-sampled locations based on

their environmental attributes. Schemann and colleagues used

such (non-spatial) multivariate logistic regression model with

trachoma data from Mali, finding that prevalence of active

trachoma was negatively correlated with rainfall, in turn resulting

in a north-south gradient of trachoma risk [14].

A major recent advance in risk mapping has been the

development of model-based geostatistics, providing a statistically

robust platform for prediction of disease risk based simultaneously

on environmental covariates and functions of spatial autocorrela-

tion [15]. The model outputs are distributions, rather than point

estimates, which fully represent prediction uncertainties and

enable flexible statistical inference, such as determining the

probability that risk in a location is above a specific threshold

[16]. Risk maps derived from model-based geostatistical predic-

tions have been used to increase the efficiency of some NTD

control programmes, such as for schistosomiasis and soil-

transmitted helminths in sub-Saharan Africa, by allowing targeting

of resources to areas where they were likely to have the greatest

impact [16–23]. However, to date these epidemiological advances

have not been applied to the management of trachoma control

programmes.

Cataract and trachoma are the two most important causes of

blindness in Southern Sudan [24]. Recent surveys have found both

extremely high prevalence of active trachoma (trachomatous

inflammation-follicular (TF) and/or trachomatous inflammation-

intense (TI)) and evidence of TT in children in some of the areas

surveyed [25,26]. These findings indicate that trachoma consti-

tutes a major problem to public health in Southern Sudan [27].

However, not all of Southern Sudan is equally at risk, as indicated

by recent surveys that identified areas where trachoma is not

endemic [28]. Generating a better understanding of the

geographical distribution of trachoma is therefore important so

that the limited available resources can be better targeted. To

provide the National Trachoma Control Programme with a tool to

prioritise areas for SAFE intervention we develop a model that

takes account of spatial correlation in the data, aiming to identify

important environmental predictors of trachoma risk in Southern

Sudan and to use these to develop a trachoma risk map.

Methods

Ethics Statement
The risk mapping analysis received ethical approval from the

Directorate of Research, Planning and Health System Develop-

ment, Ministry of Health, Government of Southern Sudan (MoH-

GoSS). The study consisted entirely of secondary analysis of data

from population-based prevalence surveys (PBPS) for which

separate ethical approval had been obtained from the same

institutional review board.

Trachoma Surveys
Field survey data were obtained from PBPS conducted and

previously reported by The Carter Center in Unity [26,29],

Jonglei [25], Eastern Equatoria, Central Equatoria and Upper

Nile States [30], and by Malaria Consortium and the MoH-GoSS,

in Western Equatoria State [28]. All PBPS used a two-stage cluster

design with randomised selection of communities and individuals

within communities. Details on the survey design and ethical

approval are provided elsewhere [25,28,31].

Diagnosis of trachoma was based on physical examination of

the conjunctiva of the survey participants by trained personnel and

the stage of trachoma was graded using the simplified WHO

scheme [32]. In the current study, only data on active trachoma

from children aged 1–9 years were included because trachoma in

this age group most likely reflected local transmission. Presence of

trachomatous inflammation (either TF or TI) of the conjunctivae

of one or both eyes was considered a positive diagnosis of active

trachoma. The age and sex of the participants were recorded

during each of the surveys. The field survey locations were geo-

referenced using a global positioning system, or by matching

community names with those in an existing geo-referenced

community database compiled by the Southern Sudan Guinea

Worm Eradication Program. The final dataset contained data

collected between 2001 and 2009 from 6345 children aged 1–9

years in 112 communities that we were able to geo-locate. The

dataset included 3181 boys and 3164 girls.

Environmental Variables
The trachoma field survey data were plotted in the GIS software

ArcView (Version 9.2, ESRI, Redlands, California, USA)

(Figure 1). Digital information on environmental variables was

obtained from different sources. Elevation above mean sea level

and interpolated long-term average monthly minimum and

maximum land surface temperature and rainfall were obtained

from the WorldClim project (www.worldclim.org). Minimum,

maximum and mean normalised difference vegetation index

(NDVI) and land surface temperature (LST) for 1982–1998 were

obtained from the National Oceanographic and Atmospheric

Administration’s (NOAA) Advanced Very High Radiometer

(AVHRR). Classified land cover variables were obtained from

the International Geosphere-Biosphere Programme (IGBP)

(http://www.igbp.net, derived from AVHRR data), grouped into

wooded savannah, savannah, cropland/shrubland/grassland and

forest/wetland, and from the United States Geological Survey

global land cover database (http://edc2.usgs.gov/glcc/glcc.php).

The location of perennial inland water bodies was provided by the

Food and Agriculture Organization of the United Nations and

used to calculate the distance of survey locations from permanent

water sources. These variables were linked in ArcView to the

trachoma field data according to location.

Author Summary

Trachoma, caused by the bacterium Chlamydia trachoma-
tis, is the leading cause of preventable blindness world-
wide and a major cause of blindness in Southern Sudan.
However, the trachoma distribution in Southern Sudan has
only been partially established and many communities in
need of intervention have not been identified or targeted.
Incomplete mapping and intervention coverage is largely
attributable to trachoma resources being scarce and not
always deployed most efficiently. The present study aimed
at improving programme efficiency by developing maps to
help target the available resources for trachoma surveys
and interventions to areas where these are most needed.
Data on active trachoma prevalence, collected during
baseline surveys between 2001 and 2009, were incorpo-
rated into Bayesian geostatistical models to develop a
national trachoma risk map. The model predicted the west
of the country to be largely at no or very low trachoma
risk, while most of the high-risk areas are located in the
centre, north, and south-east. Risk mapping has allowed
Southern Sudan’s trachoma control programme to identify
areas where collection of additional data would be most
useful. As a direct result, baseline data were collected in
March 2010 for the whole of Unity State, with antibiotic
mass drug administration being scaled up from June 2010
onwards.

Trachoma Risk Mapping, Southern Sudan
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Statistical Analysis
Co-linearity in the continuous environmental variables was

assessed using Pearson’s correlation coefficients and for all pairs of

variables with correlation .0.7, the variable with the highest p-

value in bivariate logistic regression models (with trachoma

prevalence as the outcome) was excluded. Variance inflation

factors (VIF) were also examined and variables with a VIF .10

were removed. Environmental variables were selected using

backwards stepwise logistic regression in Stata (Version 10,

Statacorp, College Station, Texas, USA) using an exit criterion

of Wald’s p.0.1 and an entry criterion of Wald’s p#0.05.

Selected environmental variables included long-term average

annual rainfall (continuous in mm) and IGBP land cover

(categorical). Age (in years) and sex of survey participants were

retained in the models as individual-level covariates.

Logistic regression models were developed in the freely available

Bayesian statistical software WinBUGS version 1.4 (Medical

Research Council Biostatistics Unit, Cambridge, UK/Imperial

College London, London, UK). These models had the disease

status (positive or negative) for active trachoma (TF and/or TI) in

each child aged 1–9 years as the Bernoulli-distributed out-

come (where positive = 1 and negative = 0). Two models were de-

veloped with the following parameters: model 1 had fixed effects

for age, sex, long-term average annual rainfall and land cover and

model 2, constructed using the principle of model-based

geostatistics[15], had fixed effects for age, sex, long-term average

annual rainfall and land cover plus geostatistical location-level

random effects with a correlation structure defined by an isotropic

exponentially decaying autocorrelation function. In this model, the

environmental fixed effects are useful for explaining large-scale

spatial variation (i.e. trend); and for spatial prediction, which is

based both on the environmental attributes of the prediction

locations and observed prevalence at nearby survey locations

(captured by the geostatistical random effect). The individual fixed

effects are useful for adjusting the model estimates for any age or

sex differences between the survey locations. These models were

constructed separately to determine whether the inclusion of the

geostatistical component improved the predictive ability of the

model. All model parameters were given non-informative prior

distributions.

Model selection was based on the deviance information

criterion (DIC, a Bayesian analogue of Akiake’s information

criterion, for which a lower value of the DIC indicates a more

favourable compromise between model fit and parsimony). Spatial

prediction based on model 2 was done in WinBUGS by

combining kriging of the random effects (i.e. estimating their

values at non-sampled locations using this geostatistical smoothing

method [33]) with application of the coefficients of the

community-level environmental covariates to the values of these

covariates at all non-sampled locations. Predictions were thus

based on the environmental covariates and the geostatistical

random effects.

Spatial predictions were validated by randomly partitioning the

survey locations into four approximately equal-sized subsets of

survey locations. The model was built using three subsets and was

used to predict prevalence of active trachoma for individuals at the

locations of the fourth subset. This procedure was repeated four

times, each time predicting prevalence of trachoma at the

locations of a different subset. Thus, predicted prevalence values

were obtained for all 112 locations.

Discriminatory performance was assessed at the individual level

and at the location level. For the former, the individual’s predicted

risk of trachoma was compared to their observed trachoma status.

For the latter, predicted prevalence was compared to observed

prevalence dichotomised using the following thresholds: .0%,

10%, 40% and 70%. For each comparison, sensitivity of the

predicted value was plotted against one minus the specificity (the

receiver operating characteristic; ROC) and the area under the

ROC was calculated. This was calculated separately for each

subset, and for the pooled values from all four subsets. Values of

Figure 1. Observed prevalence of active trachoma using data from population-based prevalence surveys, in children aged 1–9
years, Southern Sudan, 2001–2009.
doi:10.1371/journal.pntd.0000799.g001

Trachoma Risk Mapping, Southern Sudan
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area under the ROC $0.9 indicate excellent model discrimina-

tion, $0.7–0.9 indicate moderate model discrimination and ,0.7

indicate poor model discrimination. Mean prediction error and

mean absolute prediction error were also calculated to determine

model calibration.

Isotropic semivariograms (i.e. semivariograms that did not vary

by direction) were developed using the geoR library of the R

statistical software package (Version 2.9.0, The R Foundation for

Statistical Computing) to test spatial autocorrelation in the raw

prevalence data and in the Pearson’s residuals of models 1 and 2.

Results

Prevalence of active trachoma in children aged 1–9 years was

48.2%, but this varied markedly between states of Southern Sudan,

ranging from 2.2% to 77.6% (Table 1). No statistically significant

difference was found in active trachoma prevalence between boys

(47.3%) and girls (49.1%), but there was a significant negative

correlation between active trachoma prevalence and age (Table 2).

In the study communities, the average long-term average

rainfall was 979 mm (range, 509–1470 mm). In both models there

was a significant negative correlation between rainfall and the

prevalence of active trachoma (e.g., model 2: OR 0.21, 95% CI

0.08–0.46, indicative of a 79% decrease in prevalence for a 100

mm increase in rainfall). Land cover was a significant explanatory

variable in model 1, but not model 2.

The unbounded semivariogram for the raw trachoma preva-

lence (Figure 2A) suggests a spatial trend. By contrast, the

semivariogram of the Pearson’s residuals of model 1 (Figure 2B)

demonstrated second-order spatial autocorrelation (i.e. local

clustering). The semivariograms of the Pearson’s residuals of

model 2 (Figure 2C) did not show spatial autocorrelation. In this

model, the range of spatial autocorrelation can be calculated by 3/

Q and is thus 0.07 decimal degrees (approximately 8 km). This

value is indicative of the radius of trachoma clusters, as it

represents the separating distance between two points at which

spatial autocorrelation is ,5%.

Here we present spatial predictions based on model 2, which had

the lowest DIC. The map of the posterior median predicted

prevalence of active trachoma (Figure 3) shows high predicted

prevalence throughout central, northern and south-eastern South-

ern Sudan. Low predicted prevalence was apparent in the south-

west, which were generally areas with higher long-term average

rainfall. Examination of the upper and lower quartiles of the

posterior distributions of predicted prevalence (Figures 4 and 5)

suggest that large parts of Upper Nile, Unity, Jonglei and Eastern

Equatoria States have a high probability of being endemic for

trachoma, while large areas in the west of the country (particularly

Western Equatoria State, the south-western part of Central

Equatoria State and the southern part of Western Bar-el-Ghazal

State) are unlikely to be at risk of trachoma. We can be particularly

confident of the low predicted prevalence values in these latter states

because of the low prediction standard errors.

A map of the geostatistical random effects (Figure 6) suggests

areas of high residual risk of active trachoma (after accounting for

the fixed effects, rainfall, land cover, age and sex) in Upper Nile,

Jonglei, Unity and Central and Eastern Equatoria States, and

areas of low residual risk in Western and Eastern Equatoria and

Northern Bahr-el-Ghazal States. From the posterior distributions

of predicted prevalence, we also determined the probability that

predicted prevalence of active trachoma was .10% (Figure 7), an

indication as to whether antibiotic MDA is required – actual MDA

decisions are based on prevalence of only TF, not TF plus TI, in

children age 1–9 years as determined through PBPS [9].

Nevertheless, our probability map indicates that prevalence of

active trachoma in much of south-western Southern Sudan is likely

to be below the MDA intervention threshold.

Validation analysis of model 2 (Table 3) at the individual level

found, pooled across all subsets, an area under the ROC of 0.80

(95% CI 0.79, 0.81), indicating good discriminatory performance

of the model for an individual’s probability of having active

trachoma. At the location level, model 2 had excellent predictive

ability to discriminate prevalence of active trachoma relative to

thresholds of 0%, 10%, 40% and 70%, with areas under the ROC

of 0.96 (95% CI 0.93, 0.99), 0.96 (95% CI 0.93, 1.00), 0.92 (95%

CI 0.87, 0.98) and 0.80 (95% CI 0.72, 0.88) respectively (pooled

across all subsets). Mean prediction error was 20.012 and mean

absolute prediction error was 0.170, indicating that, on average,

the model under-predicted prevalence by 1.2% and model

predictions were different from the observed prevalence by 17.0%.

Discussion

The present study set out to identify areas of Southern Sudan

that are of low priority with regards to trachoma control, so that

Table 1. Descriptive statistics of active trachoma in children
aged 1–9 years in geo-referenced communities.

STATE
Number of
communities

Number TF or TI
positive/Number
screened (% positive)

Central Equatoria 9 324/464 (69.8)

Eastern Equatoria 9 437/686 (63.7)

Jonglei 29 1306/1713 (76.2)

Unity 12 484/863 (56.1)

Upper Nile 13 463/597 (77.6)

Western Equatoria 40 45/2022 (2.2)

Total 112 3059/6345 (48.2)

doi:10.1371/journal.pntd.0000799.t001

Table 2. Logistic regression models for active trachoma in
children aged 1–9 years.

Variable
Model 1 OR
(95% CI)

Model 2 OR
(95% CI)

Age (years) 0.93 (0.91–0.95)* 0.90 (0.87–0.93)*

Sex: Female 1.05 (0.93–1.17) 1.01 (0.87–1.16)

Rainfall (per 100 ml) 0.55 (0.49–0.62)* 0.21 (0.08–0.46)*

Land cover: Savanna 1.77 (1.48–2.11)* 3.44 (0.50–13.98)

Land cover: Forest or wetland 1.20 (0.98–1.46) 2.48 (0.21–12.14)

Land cover: Grass, shrub,
cropland

0.62 (0.50–0.75)* 0.81 (0.09–3.65)

Intercept (b) 20.01 (20.17–0.14) 20.86 (21.78–0.06)

Q – 41.90 (6.05–172.90)

s2 – 5.30 (3.23–8.86)

DIC 6554.9 4753.2

Reference sex is male; reference land cover is wooded savanna;
Q= rate of decay of spatial correlation;
s2 = variance of spatial random effect;
*Significant at 5% level.
doi:10.1371/journal.pntd.0000799.t002

Trachoma Risk Mapping, Southern Sudan
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the limited resources available to the National Trachoma

Control Program and its implementing partners can be targeted

to areas most in need of intervention. Using a Bayesian

geostatistical model we determined that prevalence of active

trachoma is associated with long-term average rainfall, and that

the model containing this variable reliably predicted areas at risk

of trachoma transmission. The resulting risk maps show that

trachoma control activities need to focus on the centre, north

and east of the country, and that large areas in the south-west

can, for now, receive a low priority. The predictions were also

consistent with prior knowledge of the distribution of trachoma

in Southern Sudan. Western Equatoria State, predicted to be of

low transmission risk, borders with the Democratic Republic of

Congo, which is anecdotally believed to be relatively free from

trachoma. Jonglei, Eastern Equatoria and Upper Nile States, in

contrast, were predicted to be at risk of high transmission and

border parts of Ethiopia, which is known to be highly trachoma

endemic [34].

Our findings that older children have a lower prevalence of

trachoma than younger children and that an individual’s sex is not

an important risk factor are consistent with the published literature

[7,8]. Similarly, the finding that rainfall is an important predictor

of trachoma transmission in Southern Sudan confirms earlier

results of studies from Sudan and Mali, demonstrating that active

trachoma was more prevalent in more arid areas [14,35]. Possible

explanations for this observation are that dry conditions: i) might

promote trachoma by desiccating the conjunctiva, making it more

susceptible to infection, and/or ii) increase the amount of dust

particles in the air, hence increasing irritation of the conjunctiva

and providing a vehicle for C. trachomatis to come into contact with

Figure 2. Semivariograms related to risk mapping models for active trachoma in children aged 1–9 years, Southern Sudan, 2001–
2009. A) raw data and Person’s residuals of: B) model 1; and C) model 2. Models 1 and 2 refer to the models presented in Table 1.
doi:10.1371/journal.pntd.0000799.g002

Figure 3. The median of the posterior distribution for predicted prevalence of active trachoma in children aged 1–9 years, Southern
Sudan, 2001–2009.
doi:10.1371/journal.pntd.0000799.g003

Trachoma Risk Mapping, Southern Sudan
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the eye [14]. Access to water may also be limited in dry areas, in

turn affecting bodily hygiene measures, such as hand and face

washing, hence increasing trachoma transmission by hand-to-eye

contact. Lack of water is a known risk factor for trachoma [36,37].

Additionally, semi-arid areas often tend to be inhabited by

seasonally nomadic pastoralists [8] who generally have very low

access to sanitation facilities and often defecate in animal pens

close to the living areas, hence providing an ideal habitat for the

trachoma-transmitting fly Musca sorbens in or near their home

compounds [38,39]. It is likely that livelihoods, particularly

Figure 4. Upper quartile of posterior distribution of predicted prevalence of active trachoma in children aged 1–9 years, Southern
Sudan, 2001–2009.
doi:10.1371/journal.pntd.0000799.g004

Figure 5. Lower quartile of posterior distribution of predicted prevalence of active trachoma in children aged 1–9 years, Southern
Sudan, 2001–2009.
doi:10.1371/journal.pntd.0000799.g005

Trachoma Risk Mapping, Southern Sudan
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livestock raising, in addition to other ethnicity-related factors (e.g.

house construction methods, isolation of ethnic areas from health

centres, and socioeconomic status) are major risk factors for

trachoma in Southern Sudan [8].

A limitation of the analysis is the static nature of our model.

Seasonal variation in trachoma has been demonstrated [40], but

our models did not consider the season in which the data were

collected. Substantially more data would be required to predict the

Figure 6. Spatially structured residual variation in prevalence of active trachoma in children aged 1–9 years, Southern Sudan,
2001–2009, after accounting for rainfall, land cover and age and sex of survey participants. Estimates were derived using a geostatistical
random effect.
doi:10.1371/journal.pntd.0000799.g006

Figure 7. Predicted probability that prevalence of active trachoma is .10% in children aged 1–9 years, Southern Sudan, 2001–
2009. Estimates were obtained from posterior predictive distributions derived using model-based geostatistics.
doi:10.1371/journal.pntd.0000799.g007

Trachoma Risk Mapping, Southern Sudan

www.plosntds.org 7 August 2010 | Volume 4 | Issue 8 | e799



spatiotemporal distribution of trachoma in Southern Sudan. A

second, clear limitation is the geographical spread of the data,

which in some states were obtained from clusters of neighbouring

communities, resulting in uneven geographical coverage. This is

not surprising given that spatial analysis was not a primary

objective of the surveys at the time of their implementation.

Uneven geographical coverage of Southern Sudan means that the

spatial predictions are more precise, and likely to be more

accurate, in areas that are in close proximity to the survey

locations, and relatively imprecise and less accurate in areas where

there are few data points. While we are less confident of our

predictions in some areas compared to others, our analytical

approach has the considerable advantage that we can quantify and

harness these uncertainties to prioritise future data collection in

areas of the country where our predictions are less precise.

The maps developed here can be used, in the first instance, to

prioritise surveys aimed at confirming suspected high-risk areas

and at generating baseline data to monitor and evaluate

subsequent interventions in currently non-targeted areas [28].

The risk maps thus provide a useful complementary tool to

trachoma rapid assessments (TRA) and PBPS [41] in that they

help to identify areas where collection of additional data would be

most useful. Over time, the model presented here can be refined

by incorporating new data collected in the identified high risk

areas, in turn reducing the uncertainties of the spatial predictions.

The findings presented here are in fact the result of multiple

iterations, whereby additional data, generated by georeferencing

additional sites from previous PBPS were used to revise the spatial

models and risk maps. A similar approach could be taken in other

countries where some trachoma prevalence data are already

available, although this would probably require building of in-

country capacity for spatial analysis and/or partnering with

international experts. As in Southern Sudan, these data could form

the basis for an initial model determining where additional surveys

would be most informative. In countries with no or very little

trachoma prevalence data it may be advisable to randomly survey

individuals (as outlined in the PBPS methodology [31]) in a limited

number of locations over a large geographical area, followed by

development of a risk map. Suspected high-risk areas can then be

targeted with TRAs, followed by PBPS in confirmed endemic

areas.

The risk maps also provide a useful tool to target SAFE

interventions. The National Trachoma Control Programme in

Southern Sudan now has information that allows it to categorize

the south-western part of the country as low priority for further

surveys, with resources being conserved for central, northern and

eastern areas where trachoma is more likely to be endemic. Being

able to present these findings in the form of a comprehensive risk

map may also make it easier for the MoH-GoSS to engage the

broad range of stakeholders that needs to be mobilized to deliver a

comprehensive SAFE strategy. Once more data on other NTDs

are available, such as schistosomiasis, soil-transmitted helminthi-

asis and lymphatic filariasis [31,42], the approach used here can

be applied to develop a co-endemicity map that identifies where

integrated control of these diseases is warranted [21].

We have demonstrated that trachoma risk mapping, based on

integration of field survey and environmental data in statistically

robust, spatial statistical models, was achievable and useful in

Southern Sudan. Risk mapping is therefore likely to also be

applicable to other trachoma endemic settings.
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