Emerging Tools for Pneumonia Diagnosis in Resource Poor Regions

Dr. Udantha R. Abeyratne
PhD Biomed Engineering, MEng, BScEng Electrical Eng,
GCert Paed. Sleep Science

udantha@itee.uq.edu.au, uyabey@yahoo.com

Associate Professor in Biomedical Engineering
The University of Queensland
Brisbane, Australia
Where are we?

Brisbane, the third largest city in Australia.

1-hour drive from Gold Coast.
Where are we?

The Faculty of Engineering, Architecture and Information Technology

Schools of Chemical, Civil and Mechanical Engineering

School of Architecture

School of Information Technology and Electrical Engineering

Biomedical Engineering Group

Sleep and Respiratory Systems Engineering
Our Research

• Sleep apnea diagnosis and treatment
• Respiratory diseases
• Sleep and interaction with co-morbidities
• Medical Instrument design and diagnostic algorithms
• A large part of the work targeting remote area use.
• Mobile Health (mHealth), minimally invasive diagnostics, long-term monitoring.
Clinical Collaborations

Universitas Gadjah Mada, Sardjito Hospital, Indonesia
Dr. R Triasih, Dr. A. Setyati

Royal Children’s Hospital, Brisbane, Australia
Prof. Anne Chang (Dry/wet analysis of cough)

Princess Alexandra Hospital, Brisbane, Australia
Assoc. Prof. C. Hukins (Adult Cough)

Pneumonia Diagnostics project started from scratch
In 2009 with a GCE Phase I grant from the Gates Foundation

The first journal article appeared in 2013.
Inspiration: Sound Analysis for Apnea Diagnosis

Standard PSG Smart Phone

- About 17 years of research effort
- Peer-reviewed publications, IP protection
- Competitive funding
- Research translation (Appian Medical Pvt Ltd, 2014)
- Classification sensitivity and specificity above 90% compared to standard test.
Cough Sounds Different in Different Diseases

- Asthma Cough
- Bronchitis Cough
- Heart Congestion
- Bronchiolitis
- Pneumonia
Cough Spectra too is different

FIGURE 3. Typical waveforms of cough sounds in (a) pneumonia, (b) asthma, (e) bronchitis and (f) bronchiolitis. Their frequency spectrograms are shown respectively in (c), (d), (g) and (h).
Data Acquisition

Recording location: Paediatric ward, Sardjito Hospital, Gadjah Mada University, Indonesia

Setup-1:
20Hz-20kHz Bandwidth Recording
Microphone (Model NT3, RODE®, Sydney, Australia).
Frequency response 20 Hz – 20 kHz.
A/D converter (Mobile Pre-USB, M-Audio®, CA, USA).

Setup-2:
4Hz-100kHz bandwidth Recording
Microphone (Model 40BE, GRAS®, Holte, Denmark)
Frequency Response 4 Hz – 100 kHz
A/D converter (Model Tracker Pre, E-MU®, CA, USA).
<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with symptoms of chest infection, Cough, Sputum, Increased breathlessness</td>
<td>Advanced disease where recovery is not expected eg terminal lung cancer</td>
</tr>
<tr>
<td>Temperature >37.5°</td>
<td>Droplet precautions</td>
</tr>
<tr>
<td>Consent</td>
<td>NIV required</td>
</tr>
<tr>
<td></td>
<td>No Consent</td>
</tr>
</tbody>
</table>
FIGURE 1. Overall block diagram of the proposed method. The method consists of three main stages: (i) creating cough sound datasets, (ii) the development of features & the training of pattern classifiers, and, (iii) the prospective validation and performance evaluation of the technology.
Performance – Bedside microphone

- Model \(\{M_{cs}, R_{0s}\} \)
 - Cough Features only
 - Sensitivity, Specificity
 - # Coughs: 91

- Model \(\{M_{as}, R_{5s}\} \)
 - Cough Features, BrI, Fever & Age
 - Sensitivity, Specificity
 - # Coughs: 91

- Model \(\{M_{as}^{(2)}, R_{2s}\} \)
 - Cough Features & Fever
 - Sensitivity, Specificity
 - # Coughs: 91
TABLE 7. The performance of the selected (best) LRM models in diagnosing pneumonia at the patient level, based on the pneumonia cough index (PCI).

<table>
<thead>
<tr>
<th>Selected LRM model</th>
<th>Sens (%)</th>
<th>Spec (%)</th>
<th>Acc (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>${M_{cb}, R_{cb}}$: only cough-features</td>
<td>94</td>
<td>75</td>
<td>88</td>
<td>89</td>
<td>86</td>
<td>0.72</td>
</tr>
<tr>
<td>${M_{as}, R_{1a}}$: cough and Brl</td>
<td>88</td>
<td>62.5</td>
<td>80</td>
<td>83</td>
<td>71</td>
<td>0.52</td>
</tr>
<tr>
<td>${M_{as}, R_{2a}}$: cough and fever</td>
<td>94</td>
<td>100</td>
<td>96</td>
<td>100</td>
<td>89</td>
<td>0.91</td>
</tr>
<tr>
<td>${M_{as}, R_{3a}}$: cough and Age</td>
<td>88</td>
<td>75</td>
<td>84</td>
<td>88</td>
<td>75</td>
<td>0.63</td>
</tr>
<tr>
<td>${M_{as}, R_{4a}}$: cough, Brl and fever</td>
<td>82</td>
<td>87.5</td>
<td>84</td>
<td>93</td>
<td>70</td>
<td>0.66</td>
</tr>
<tr>
<td>${M_{as}, R_{5a}}$: cough, Brl, fever and age</td>
<td>88</td>
<td>100</td>
<td>92</td>
<td>100</td>
<td>80</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Results were obtained with the Prospective Data Set D_{pv}. $P = 11$ cough events were used for PCI calculation in Eq. (4). Note that Sens, Spec, Acc, PPV, NPV and κ respectively denote sensitivity, specificity, accuracy, positive predictive value, negative predictive value and the Cohen’s kappa statistic.

\[
\text{BrI} = \begin{cases}
 \text{BR} - 20 & \text{if Age } \geq 60 \text{ months} \\
 \text{BR} - 40 & \text{otherwise}
\end{cases}
\]
Modes of Use

On the abdomen:

Cough detection can be aided by abdominal movements caused by cough.

Non-contact:

In-air sound measurement.
Pneumonia Screening App
PneumoFone Technology and the IMCI

Cough or Difficult Breathing?

Pneumonia/No pneumonia?
(Annals of BME, USA, 2013)

Pneumonia/Asthma?
(Bronchodilator Test Substitute)
IEEE Trans. of BME (under peer review, 2014)
PneumoFone Technology and Potential Other uses

- Enhanced WHO Criteria?
- Other parameters?
 - Fixed individual thresholds?
 (paper in preparation, 2014)
- Cough Statistics,
 Cough Counting
 (paper under peer review, 2014)
- Wet Cough/Dry Cough?
 (Annals of BME, USA, 2013)
Enhanced WHO?

- Cough analysis coupled with other parameters (respiratory rate, existence of fever, age, gender,..) – requires manual entry of extra information.

- Diagnostic models that use breathing rate, age, oxygen saturation etc. and the existence of cough/breathing difficulty and fever etc. (not available on the phone demonstrated but can be added quickly).
What is next?

PneumoFone:

- Optimizing coefficients of the algorithm for the Smart Phone.
- Severity classification
- Further validation using a larger prospective dataset.
- Limited Field Testing, FDA/TGA Approval, Field Testing

Partnerships Needed!

Mobile Phone Augmentation options

- Peripheral electronics/devices for the smart phone.
- Telemedicine approaches where useful
- Epidemiology
Smart Phones

• Do we really need smart phones?
• Will they be affordable?
• Where in the management of pneumonia can we use the smart phones (or the alternative implementations)?
 - In-home monitoring?
 - Clinic, CHW home, during consultation?
 - Managing the queue?
 - Pneumonia confirmation (X-ray substitute)?
 - Bronchodilator substitute?
Smart Phone penetration is accelerating substantially in the developing world

- Second quarter of 2013: more smartphones sold than feature phones.
- 2013: within a year, smartphone penetration doubled in India.
- Smart phones costing about $100 is available.
- Pessimistic estimate: 20% of the African population will have a smart phone by 2017.
Project Status – June 2014

• GCE Phase I completed in 2011. No funding at present.

• 2 journals published, 3 journals under peer review, two journals in preparation. Several peer-reviewed archival conference proceedings published and publicly available.

• International PCT patent filed by UQ (subject to the terms of the BMG Foundation Global Access Initiatives).

• One postdoctoral fellow and 2 PhD students (both from Indonesia) trained; several undergraduate students did their theses on the project (e.g. TriCoder, PneumoFone app).

• Original GCE Phase I leveraged by funding contributions from UQ (two PhD scholarships, travel fellowships, postdoc partial support, UniQuest PathFinder Grant, researcher time in UQ and outside).

• Smart phone prototype proof-of-concept is available, but require further work before field testing.

• We have the ability to develop other implementations, from designing and prototyping electronic devices to implementing advanced algorithms.
Further Information

Acknowledgements

Pneumonia Diagnostics Project

Bill & Melinda Gates Foundation (GCE Phase I Grant, 2009)
 Which started it all!

The University of Queensland (2X PhD Scholarships)

UniQuest Pvt Ltd. (PathFinder Grant)

Universitas Gadjah Mada, Indonesia (clinical collaboration, data site)

Royal Children’s Hospital, Brisbane (clinical collaboration, dry/wet)

Princess Alexandra Hospital, Brisbane (clinical collaboration)

Postdocs and research students

Dr. V.Swarnkar, Yusuf Amrulloh, Keegan Koshasih, Dulip Herath, Gavin Ong

Contact Details

udantha@itee.uq.edu.au, uyabey@yahoo.com