

a decade in communicable disease control and child health

Developing a suitable algorithm for identifying asymptomatic malaria at border points "The cross-border project"

Hannah Edwards 25th March 2014

PREVENTION

DIAGNOSIS

TREATMENT

Background

Cross-border population movement = potential threat to achieving elimination of malaria

- Borders frequented by migrant and mobile populations, vulnerable to infection
- BUT hard to target for surveillance and malaria interventions
- Need to identify asymptomatic infection

PREVENTION

DIAGNOSIS

Aim:

The purpose of this study is to provide real insights into how cross-border surveillance can be adapted and better targeted to the difficult to reach populations and, accordingly, whether it should be continued and scaled up further

PREVENTION

Who did we screen?

Results: malaria positivity rates

RD T	Border	# participants	# Positive cases	Positivity Rate %	# Pf (%)	# Pv (%)	# Mixed (%)
	Thai	1,055	1	0.1	1	0	0
	Vietnam	1,007	10	1.0	4	6	0
	Laos	1,144	92	8.0	62	28	2
	Total	3206	103	3.2	67 (65.0)	34 (33.0)	2 (1.9)

PCR

Border	# samples	# Positive cases	Positivity Rate %	# Pf (%)	# Pv (%)	# Pm (%)	# Pf/Pv (%)	# Pv/Pm (%)
Thai	586	3	0.5	2	1	0	0	0
Vietnam	326	9	2.8	0	7	1	0	1
Laos	473	67	14.2	28	27	0	12	0
Total	1385	79	5.7	30 (38.0)	35 (44.3)	1 (1.3)	12 (15.2)	1 (1.3)

PREVENTION DIAGNOSIS

Results (cont): symptomatic vs asymptomatic cases

Border Site	# of participants	Positive cases	Positivity rate (%)	Fever (≥37.5°C)	# symptomatic positive cases	# asymptomatic positive cases
Thai	1,055	1	0.1	13	0	1
Vietnam	1,007	10	1.0	39	4	6
Laos	1,144	92	8.0	154	30	62
Total	3206	103	3.2	206	34	69

If using fever only to trigger testing, we would have missed 67% of positive cases (asymptomatic carriers)!

PREVENTION

Main risk factors for infection

Variable		Prevalence (%)	Adjusted OR	p-value
Fever	No	2.1	1	-0.0001
	Yes	17.2	3.9	<0.0001
Age (years)	<15	2.3	4.9	
	15-40	3.9	2.9	0.004
	>40	1.5	1	
Occupation (Security/Armed forces	11.3	3.1	
	Manual Labour	10.5	2.2	0.02
	Agriculture	3.2	1.1	0.02
	Other	1.1	1	
Forest-goer	No	0.9	1	-0.0001
	Yes	11.7	5.4	<0.0001
Knowledge of prevention	< 2 methods	4.1	1	0.006
	2+ methods	1.4	0.4	0.000
Previous malaria episode	Yes	7.0	5.5	
	No	0.6	1	<0.0001
	DK	0.9	1.4	

(variables also adjusted for sex)

Other risk factors for infection

- Sex...*Male*

PREVENTION

- Travel to/from...Laos
- Length of trip...>1week
- Direction of travel...Exit
- Day of crossing... Weekday
- Calendar Period...Aug-Sept, Oct-Nov

DIAGNOSIS

- Time of crossing ... Afternoon

Important programmatic variables to consider for future cross-border activities

TREATMENT

Why was Trapaing Kreal identified as a 'hot' border?

PREVENTION

DIAGNOSIS

TREATMENT

Prevalence of forest-goers in study population

Forest-goers can be targeted with BCC and programmatic initiatives

TREATMENT

RESEARCH

DIAGNOSIS

PREVENTION

Distribution of occupation groups in study population

Security forces need to be targeted for malaria control activities

PREVENTION

Prevalence of previous malaria episode in study population

Heterogeneity of reported malaria risk captured and high risk populations can potentially be targeted

Knowledge of malaria prevention methods in study population

Where knowledge of malaria is low there is potential role for BCC at cross border points

PREVENTION	DIAGNOSIS	TREATMENT	RESEARCH

Key conclusions

Cross-border malaria was found to be at a high level in Trapaing Kreal (Cambodia-Lao border) and requires urgent attention:

- Potential algorithm to optimise highest yield of malaria parasites at cross-border points (suitable for both symptomatic and asymptomatic infections)
- Border specific risk factors identified capable of guiding surveillance efforts and programmatic interventions
- Programmatic factors relevant for future upscale of crossborder surveillance activities: Weekday, Afternoon, Peak malaria season, etc

PREVENTION

DIAGNOSIS

Way forward

Malaria Consortium is committed to support national programmes in establishing cross-border malaria surveillance in the region, by...

- Locating potential "hot" borders and conduct similar activities to identify extent of problem
- Linking with BCC initiatives, resistance surveillance and programmatic interventions
- Exploring in detail the role of cross-border activities in unofficial borders
- → Applying lessons to other countries in the SEA region

PREVENTION

DIAGNOSIS

TREATMENT

Thank you

www.malariaconsortium.org

Supported by:

UKaid from the British people

PREVENTION

DIAGNOSIS

TREATMENT

a decade in communicable disease control and child health

www.malariaconsortium.org

Thank you

PREVENTION

DIAGNOSIS

TREATMENT

Refusal population

Comparison of Nationality:

PREVENTION

DIAGNOSIS

Refusal population

Comparison of Socioeconomic Status:

PREVENTION

DIAGNOSIS

Refusal population

Comparison of Age:

PREVENTION

DIAGNOSIS

RDT performance

- Sensitivity → probability of being test positive when the disease is present
 Specificity → probability of being test negative when the disease is not present
- PPV → probability of patient having disease when the test is positive
- NPV -> probability of patient NOT having disease when the test is negative

Sensitivity (%)	45.6
Specificity (%)	98.8
PPV (%)	70.6
NPV (%)	96.7

PREVENTION

PCR asymptomatic cases

Border Site	# of participants	Positive cases	Positivity rate (%)	Fever (≥37.5°C)	# symptomatic positive cases	# asymptomatic positive cases
Thai	586	3	0.5	6	0	3
Vietnam	326	9	2.8	4	0	9
Laos	473	67	14.2	91	15	52
Total	1385	79	5.7	101	15	64

If using fever only to trigger testing, we would have missed 81% of positive cases (asymptomatic carriers)!

PREVENTION DIAGNOSIS

Unofficial borders

42 Participants - 24 (57%) Male, 18 (43%) Female

All Khmer

5 (12%) Fever

17 (40%) Temporary residents in village

Most crossed daily, and for work reasons

High knowledge of malaria and prevention methods

NO POSTIVE CASES OF MALARIA (RDT)

